

Conten	ts Boo, J	.н.
1. Introduction		
2. Solar collectors		
3. Solar cookers		
4. Sokar desalination		
5. Solar cooling and heating		
6. PVT and CPVT		
7. Medium to high temperature solar	r thermal applications	
8. Concentrating solar system and h	high temperature applications	
9. Future scope		
21st IHPC and 15th IHPS	W KOREA AEROSPACE UNIVERSITY	

	Solar energy-general -1	Boo, J.H.
	 Background Global warming caused by CO₂ emission (primarily due to burning of fossil fuels), Increase in energy demand while the prices of oil & gas fluctuating, Increasing need for environmentally friendly (pollution free), renewable energy, 	
	 Readily available, widespread energy source 	
	 Challenges Low heat density (flux): max. 1,000 W/m² (0.1 W/cm²) in most of the temperate regions on earth. [cf. solar constant: 1,368 W/m² when the earth is at its mean distance fro the sun (extraterrestrial insolation)] Intermittent availability (only during daytime in clear days) Low economic viability relative to other energy sources (if not always) 	m sr
21	st IHPC and 15 th IHPS 🛞 KOREA AEROSPACE UNIVER	ISITY

Desalination -8	Summary/Review
The major issue of solar desalination to other intensive desalination proces	is the low water production rate, compared s.
 <u>Direct solar still</u> has its own advantag Eco friendly 	es:
- Direct desalination based on simple	e principle and structure
 However, the productivity (yield rat desalination methods. 	e) is the lowest among various solar
 For higher productivity of fresh water, However, the productivity should be in 	indirect methods are generally preferred. nproved considerably.
 For efficient heat supply with high t ETSC. HP proved to be beneficial 	emperature, most of recent R&D employ for performance enhancement.
 Use of solar concentrator may sup process. Cylindrical geometry of E concentrators. 	bly even higher heat flux to the desalination ISC can easily adopt PTC and CPC
 Selection of proper PCM (to prolon transport) need to be carefully revie 	g the operating time) and HTF (thermal ewed.
- Desalination system performance of	can be evaluated by yield rate and efficiency.
	36
21 st IHPC and 15 th IHPS	W KOREA AEROSPACE UNIVERSITY

PVT systems-9	Reviews	Boo, J.H.					
 According to the literature, the follow The performance of the HP-PVT inlet temperature and mass f PV cell covering factor* (*rational strength stren	vings can be stated on HP-P is influenced by different fac <u>flow rate</u> of the cooling fluid, io of the cell area and total a V cell and HP.	VT performance. tors such as irea)					
 By increasing the <u>flow rate of the</u> gain of the PV/T panel are enhan 	cooling fluid, the efficiency a ced.	and the energy					
 The increase of the <u>covering factor</u> enhanced total efficiency, while the 	<u>or</u> results in higher electrical ne thermal efficiency of the s	gain and system decreases.					
 The thermal efficiency, electrical electrication between the following ranges: η_{th} = 6.8% to 10.3%. 	efficiency and exergy efficiency = 41.9 to 63.6%, $\eta_e = 9.4$ to	ncy varied 15.1%, and ε _{PVT}					
 PV efficiency (η_e) could increase surface temperature is controlled <i>Jouhara et al. Energy</i> 108(2016)]. 	by 15 - 30% compared to th to around 40℃ [<i>Zhang et al. I</i>	e sole PVs, if its RSER* 16(2012),					
 Combination of PCM with HP in PVT systems is recommended that may further enhance the performance (with a prolonged operating time). Refer to <u>Carmona et al. [Renewable Energy 172(2021)]</u> for supporting experimental results on PVT-PCM (w/o HP): e.g. a 7% increase in daily electrical efficiency. *RSER: Renewable and Sustainable Energy Reviews (A Journal)							
21 st IHPC and 15 th IHPS	🛞 KOREA AE	ROSPACE UNIVERSITY					

Test repo	9 Fest report no.: 13014152 001					9/22 K TÜVRheinland®										
5.	KA #12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U-CP\ 9%.4 5.4 5.4 5.6 5.5 63.5 5550 6341	× 5.4 5.4 1007.0 1007.0 1008.0 977.0 1008.0	283 283 284 282 282	2# (A) 3.4 2.4 3.5	유물 전기물목 [44] 95.4 95.1 89.5	월월기 전말도사 조사왕(M) 4918 4846 4675 4225	R書 27 (法部工品件) (法部名件) 194 194 195 192 194	명각= 도구용도 (%) 214 214 219 220	명각= 물구용도 PC) 용21 용21 용27	9 31年 919 040 2222 223.6 2242 227.5	9 8) = @ (%) 461 400 481	※目 第章 (%) 64.6 65.5 67.2 67.5			Electrical efficiency range <u>19 to 31.2%,</u> Thermal efficiency ranged
	200 () 200 () 100 () 100 ()	632 674 649 685 605	10000 10080 10080 9930 9930 9920	282 282 274 274 274 274	34 23 33 33 83	962 984 917 921 906	4997 4852 4822 4798 4755	196 195 190 192 191	219 219 222 233 238 238	386 385 581 583 582	2228 2808 2419 2435 2426	474 475 501 510	efficie	ncy		$\frac{48.2 \text{ to } 64.7\%}{\eta_{\text{th}} = 48~65\% \text{ in this stud}}$ better than existing flat-p type solar collector
Summary Sample #	r Test r	r esult s R structic	s temar onal c	rks / :haract	teristics	DN	ll [W/m²] ^{전기}	변환효· (%)	on on	호 회수율 (%)		복합효율 (%)			HP-CPVT system with Fresnel lens showed low performance than the
1		KAI (ସ	U-FLC 빅체 냉	:PV5-L 각식)			733.6		31.2		64.7		95.5		-CFV	Liquid-cooled CPVT syste Still, it <u>showed the secon</u> best electrical eff. (29.1%
2		KAU (히트피	I-FLCF 파이프	PV5-HF 드 냉각4	P 식)		737.4		29.1		54.8		83.8			and combined eff.(83.8%
3		KAU (CPV	-CPV -LFR,	200LFF CR200	R D)		585.8		19		58.4		77.4			
4		KAU (CPV	-CPV -LFR,	300LFF CR300	R D)		679.6		22.4		53.9		76.4			
5		KAU (CPV	-CPV	400LFF CR400	R D)		613.5		19.3		48.2		67.6			

Medium-T HP TES System General											
 Medium-temperature range Heat Pipe: 550 to 750 K (280 to 480°C) Often encountered in subsystems of solar thermal power (esp. for CR > 1,000) Typical HP WFs for Med-T range Mercury (toxic), Naphthalene Synthetic fluids: Flutec PP9 (<160°C), PP2 (< 225°C, dielectric) Dowtherm-A* (Thermex): 150-400°C *a eutectic mixture of diphenyl & diphenyl ether 											
 Molten salts as PCM for Medium-T range TES (Thermal Energy Storage) > Reduction of system volume/weight (due to latent heat)/ Less operating cost > Difficulties Very low thermal conductivity of molten salts (order of 10⁻¹ W/m-K) Large T-gradient (∆T)in the system Long response time due to low heat transfer Challenge Entenge the heat transfer performance of the system using Heat Direct 											
	T-range Med-High T MedT Ref.										
	Name Potassium Nitrate Lithium Nitrate Sodium Nitrate										
Typical	Chemical formula KNO ₃ LiNO ₃ NaNO ₃										
molten salts	Melting point 334°C 253°C 308°C										
as PCM	Density, kg/m ³ 2,110 2,380 2,257										
	Latent heat of Fusion, kJ/kg 95 387 178 Thermal Conductivity, W/m-K 0.5 0.5 0.2 Specific heat, kJ/kg-K 0.95 0.93 1.095										
'Solar salt ': Eute [M.P. 220℃, C _p	ectic mixture of 60 wt.% sodium = 1517 J/kg-K, ρ = 1817 kg/m	nitrate (NaNO ₃) and ³ , k= 0.49 W/m-K].	40 wt.% potassiu	im nitrate (KNO	3), 66						
21° InPC and 15	· INPS	0	KOREA AEROS	SPACE UNIVER	SITY						

adding HP enhances thermal performance (quantified in terms of dim'less HP effectiveness). Khalifa et al. (2014, ATE 70) numerically and experimentally investigated HP-TES and quantified the advantages of utilizing axially finned HPs. In the numerical study, HP WF (mercury), PCM and HTF were the same as in Shabgard et al. (2010). The results have shown the energy extracted increased by 86% and the HP effectiveness increased by 24%. In experiments, copper-water HPs were used and the results included temperatures below

High-temperature solar application -2

The container wall and transport lines of the loop-type HP were made of stainless steel 304, and the WF was sodium. The geometry was complex reflecting thermal interface in <u>AMTEC</u>. The evaporator and condenser were disk-type containers with diameters of 122 and 216 mm, respectively, though both had a height of 20 mm. The diameters of the <u>vapor</u> and liquid lines were 12.7 and 9.53 mm, respectively. The total length of the loop was <u>approximately 1.4 m</u>. Screen wicks were attached to inner wall of condenser to enhance the thermal elementaria the elementary of the total length.

Boo, J.H.

